Mathématiques de base Exemples

Resolva para y 3(10^(6y))=11(10^(3y))+4
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Réécrivez comme une élévation à une puissance.
Étape 3
Réécrivez comme une élévation à une puissance.
Étape 4
Remplacez par .
Étape 5
Multipliez par .
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Soustrayez des deux côtés de l’équation.
Étape 6.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Réécrivez comme .
Étape 6.2.2
Laissez . Remplacez toutes les occurrences de par .
Étape 6.2.3
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1.1
Factorisez à partir de .
Étape 6.2.3.1.2
Réécrivez comme plus
Étape 6.2.3.1.3
Appliquez la propriété distributive.
Étape 6.2.3.1.4
Multipliez par .
Étape 6.2.3.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 6.2.3.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 6.2.3.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 6.2.4
Remplacez toutes les occurrences de par .
Étape 6.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Définissez égal à .
Étape 6.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.1
Divisez chaque terme dans par .
Étape 6.4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.2.1.1
Annulez le facteur commun.
Étape 6.4.2.2.2.1.2
Divisez par .
Étape 6.4.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.2.3.1
Placez le signe moins devant la fraction.
Étape 6.4.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.4.2.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.4.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.4.1.1
Réécrivez comme .
Étape 6.4.2.4.1.2
Réécrivez comme .
Étape 6.4.2.4.2
Extrayez les termes de sous le radical.
Étape 6.4.2.4.3
Élevez à la puissance .
Étape 6.4.2.4.4
Réécrivez comme .
Étape 6.4.2.4.5
Toute racine de est .
Étape 6.4.2.4.6
Multipliez par .
Étape 6.4.2.4.7
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.4.7.1
Multipliez par .
Étape 6.4.2.4.7.2
Élevez à la puissance .
Étape 6.4.2.4.7.3
Utilisez la règle de puissance pour associer des exposants.
Étape 6.4.2.4.7.4
Additionnez et .
Étape 6.4.2.4.7.5
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.4.7.5.1
Utilisez pour réécrire comme .
Étape 6.4.2.4.7.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.4.2.4.7.5.3
Associez et .
Étape 6.4.2.4.7.5.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.4.7.5.4.1
Annulez le facteur commun.
Étape 6.4.2.4.7.5.4.2
Réécrivez l’expression.
Étape 6.4.2.4.7.5.5
Évaluez l’exposant.
Étape 6.4.2.4.8
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.4.8.1
Réécrivez comme .
Étape 6.4.2.4.8.2
Élevez à la puissance .
Étape 6.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Définissez égal à .
Étape 6.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Remplacez par dans .
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Réécrivez l’équation comme .
Étape 8.2
Prenez le logarithme de base des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 8.3
L’équation ne peut pas être résolue car est indéfini.
Indéfini
Étape 8.4
Il n’y a pas de solution pour
Aucune solution
Aucune solution
Étape 9
Remplacez par dans .
Étape 10
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Réécrivez l’équation comme .
Étape 10.2
Prenez le logarithme de base des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 10.3
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 10.3.1
Développez en déplaçant hors du logarithme.
Étape 10.3.2
La base logarithmique de est .
Étape 10.3.3
Multipliez par .
Étape 11
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :